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Cluster randomized trials (CRTs) were originally proposed for use when ran-
domization at the subject level is practically infeasible or may lead to a severe
estimation bias of the treatment effect. However, recruiting an additional cluster
costs more than enrolling an additional subject in an individually randomized
trial. Under budget constraints, researchers have proposed the optimal sample
sizes in two-level CRTs. CRTs may have a three-level structure, in which two lev-
els of clustering should be considered. In this paper, we propose optimal designs
in three-level CRTs with a binary outcome, assuming a nested exchangeable cor-
relation structure in generalized estimating equation models. We provide the
variance of estimators of three commonly used measures: risk difference, risk
ratio, and odds ratio. For a given sampling budget, we discuss how many clus-
ters and how many subjects per cluster are necessary to minimize the variance
of each measure estimator. For known association parameters, the locally opti-
mal design is proposed. When association parameters are unknown but within
predetermined ranges, the MaxiMin design is proposed to maximize the mini-
mum of relative efficiency over the possible ranges, that is, to minimize the risk
of the worst scenario.
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1 INTRODUCTION

Cluster randomized trials (CRTs) were originally proposed for use when randomization at the subject level is practically
infeasible or may possibly lead to a severe estimation bias of the treatment effect. In practice, implementation strategies
play important roles in dissemination and implementation research. Compared to subject-level randomized trials, CRT
designs have appealing features for implementation science in public health and clinical medicine. Furthermore, CRTs
are greatly needed for effectiveness research from science to practice.1,2 Therefore, there has been growing interest in
the design of CRTs.3-9 The unit of randomization might be hospitals, clinics, classrooms, etc. Subjects within a cluster
are exposed to common factors and tend to share similar characteristics. The degree of such similarity is commonly
quantified by the intracluster correlation coefficient (ICC). Recruiting an additional cluster costs more than enrolling
an additional subject in an individually randomized trial; thus, researchers have proposed the optimal sample size as a
function of sampling costs and the ICC in CRTs.10-16 “Optimal” means the maximum power and precision for a given
sampling budget or the minimum sampling cost for a given power and precision. These approaches show that the optimal
sample size depends strongly on the ICC. However, the ICC is usually unknown in CRTs. To overcome this shortcoming,
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Van Breukelen and Candel considered a range of possible ICC values and presented MaxiMin designs (MMDs) based on
relative efficiency (RE) under budget constraints.17 Wu et al proposed the optimal group allocations for three measures
(risk difference [RD], risk ratio [RR], and odds ratio [OR]) in two-level CRTs with binary outcomes through the variances
of the maximum likelihood estimators.18

CRTs may have three-level structures. For example, subjects in a two-level CRT are measured at different time points.
Measurements across the different time points are correlated within a subject, whereas subjects are correlated within a
cluster. Another example is that interventions are randomly assigned to medical centers (“practices”), and health care pro-
fessionals (“providers”) within the same practice are trained with the assigned intervention to provide care to participants.
Participants could be correlated within a provider, whereas providers could be correlated within a practice. Hereafter, we
use a CRT with practice, provider, and participant levels as the three-level example. For simplicity, we consider the same
provider size (number of participants from each provider) and equal practice sizes (number of providers per practice).

Generalized estimating equations (GEEs) proposed by Liang and Zeger19 have been commonly applied to analyze
the correlated data in CRTs.20-24 Liang and Zeger showed that the GEE approach still gives consistent estimates of the
regression coefficients provided that the marginal model is correctly specified, even if the working correlation matrix is
incorrectly assumed.19 In this paper, we aim to propose an optimal design (OD) in three-level CRTs, in which “optimal”
refers to the minimization of the variance of each measure estimator for a given sampling budget. We assume the nested
exchangeable correlation structure25 throughout and utilize the GEE models in a three-level CRT with a binary outcome.
The correlation structure includes correlation among participants within the same provider in the same practice, r, and
correlation among participants with different providers in the same practice, 𝜌. Both r and 𝜌 are assumed to be constant
across all practices. Three different link functions in GEE models are considered, eg, identity, log, and logit, where the
corresponding regression coefficients are related to RD, RR, and OR, respectively.

For known association parameters (r, 𝜌), we discuss how many practices m need to be enrolled and how many providers
per practice n are sufficient to minimize the variance of each measure estimator under the budget constraints when the
provider size K is a predetermined value and K is not a fixed value but within a range (Kmin, Kmax), respectively. This is
a locally optimal design (LOD) with corresponding numbers nLOD and mLOD. When the association parameters (r, 𝜌) are
unknown, but we assume that ranges for r and 𝜌 can be obtained from other literature and similar studies, we propose
MMDs in the framework of RE to minimize the risk of the worst scenario. RE is defined as the ratio of the variance of each
measure estimator for practice size nLOD to n,17, which is a function of n, r, and ρ. Our goal is to maximize the minimum
of RE over the possible ranges of r and 𝜌.

The organization of this paper is as follows. In Section 2, we briefly summarize the GEE method developed by Liang
and Zeger in three-level CRTs,19 introduce the “nested exchangeable” correlation structure,25 and derive the variance of
the estimator of the treatment for a binary outcome in a two-group comparison. Section 3 presents the LOD for known
parameter values under the assumption of a “nested exchangeable” correlation structure. In Section 4, we define the
RE and propose MMDs for unknown parameter values of r and 𝜌. We provide guidance on applying the methods and
illustrate using a real CRT, followed by a discussion about the limitations of the proposed approach and directions for
future research.

2 STATISTICAL GEE MODELS IN THREE-LEVEL CRTS

Let Yijk be a response from participant k = 1, … , K, for provider j = 1, … , ni in practice i = 1, … , m. Let
Xijk = (Xijk1, … , Xijkp)′ be a covariate vector and 𝜇ijk = E(Yijk| Xijk) be a marginal mean response given Xijk. The marginal
model is

g(𝜇ijk) = X ′
ijk𝜷.

Let Yij = (Yij1, … , YijK), 𝝁ij = (𝜇ij1, … ,𝜇ijK), and Xij = (Xij1, … , XijK) be the 1 × K response vector, the 1 × K marginal
mean response vector, and the p × K covariate matrix of provider j in practice i, respectively. Let Y i = (Y i1, … ,Y ini)

′,
𝝁i = (𝝁i1, … ,𝝁ini

)′, and X i = (X i1, … ,X ini ) be the matrices of responses, marginal mean responses, and covari-
ate of the providers in practice i, respectively. The mean of Yi is denoted by 𝝁i = E (Yi), and the variance of Yi is
var (Y i|X i) = 𝜃A1∕2

i Ri0 (𝝎𝟎)A1∕2
i , where Ai = diag{𝛾 (𝜇i11) , … , 𝛾 (𝜇i1K) , … , 𝛾(𝜇ini1), … , 𝛾(𝜇iniK)}, and a Kni × Kni corre-

lation matrix Ri0(𝝎0) describes the correlation of measures within the ith practice with a vector of association parameters
denoted by 𝝎0. Both 𝛾 and 𝜃 are dependent on the distribution of responses. If Yijk is binary, 𝛾(𝜇ijk) = 𝜇ijk(1 − 𝜇ijk)
and 𝜃 = 1. Liang and Zeger19 showed that

√
m(𝜷 − 𝜷) is asymptotically multivariate normal with a covariance matrix
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V R = limm→∞m(𝚺−1
1 𝚺0𝚺−1

1 ), where 𝚺1 =
∑m

i=1 D′
iV

−1
i Di, 𝚺0 =

∑m
i=1 D′

iV
−1
i cov (Y i|X i)V−1

i Di, Di = 𝜕𝝁i/𝜕𝜷′, and Vi is
a working covariance matrix of Yi. Let Riw(𝝎) be a Kni × Kni working correlation matrix with a vector of association
parameters 𝝎. The working covariance matrix is expressed as V i = 𝜃A1∕2

i Riw (𝝎)A1∕2
i and is unequal to var (Yi| Xi) unless

Riw(𝝎) = Ri0(𝝎0).
For three-level data, Teerenstra et al proposed a “nested exchangeable” correlation structure25:

1. correlation among participants within the same provider in the same practice, is constant, Corr(Yijk1 ,Yijk2) = r for
k1 ≠ k2;

2. correlation among participants with different providers in the same practice, is constant, Corr(Yi𝑗1k1 ,Yi𝑗2k2) = 𝜌 for
j1 ≠ j2 and any k1, k2.

This three-level exchangeable working correlation structure was defined as

Riw (r, ρ) = 𝜌𝟏Kni×Kni + (r − 𝜌)Bdiagni (𝟏K×K) + (1 − r) IKni×Kni ,

where 1i × i is an i × i matrix of 1's, Bdiagi(A) is a block diagonal matrix with matrix element A replicated i times, and Ii × i
is the i × i identity matrix. Here, Riw(r, ρ) must be positive definite (PD). Given a value of K and ni, PD can be determined
if the constraints hold: min(𝜆1, 𝜆2, 𝜆3i) > 0, where 𝜆1 = 1 − r, 𝜆2 = 1 + (K − 1)r − K𝜌, 𝜆3i = 1 + (K − 1)r + K(ni − 1)𝜌 are the
distinct eigenvalues of Riw(r, ρ). The proof was provided in Web Appendix A in the work of Li et al.26 Here, the constraints
are equivalent to

− 1
K − 1

< r < 1,−1 + (K − 1) r
K(ni − 1)

< 𝜌 <
1 + (K − 1) r

K
. (1)

We assume this “nested exchangeable” correlation structure in the following sections.
Suppose we are interested in testing the treatment effect for a two-group comparison: treated versus control. The treat-

ment assignment is coded in the last column of the practice covariate matrices X ′
i , and the corresponding last parameter

of 𝜷 is 𝛽p. Let V𝛽 denote the (p, p)th element of VR. Thus,
√

m(𝛽p −𝛽p) has an asymptotically normal distribution N(0, V𝛽)
or, equivalently, Var(𝛽p ) = V𝛽∕m. For simplicity, we take p = 2, ie, coefficient 𝛽1 is the intercept, and coefficient 𝛽2 is
the treatment effect. The practice allocations of the treatment and control groups are mtrt = m𝜋 and mcont = m(1 − 𝜋),
respectively, where 𝜋 is a predetermined value, eg, 50%. The hypotheses of interest are H0 : 𝛽2 = 0 versus H1 : 𝛽2 = 𝛽. For
a binary outcome, let p0 and p1 be the success rates in the control and treated groups. When the identity link function,
g(𝜇ijk) = 𝜇ijk, is specified, 𝛽2 = p1 − p0 is the RD between two groups; when the log link function, g(𝜇ijk) = ln(𝜇ijk), is speci-
fied, 𝛽2 = ln (p1/p0) is the difference between the natural logarithms of the proportions; and when the logit link function,
g(𝜇ijk) = ln (𝜇ijk/(1 − 𝜇ijk)), is specified, 𝛽2 = ln

(
p1∕(1−p1)
p0∕(1−p0)

)
is the difference between the natural logarithms of the odds.

When the log and logit link functions are used, taking the exponential of 𝛽2 refers to the RR and the OR, respectively.
Given the “nested exchangeable” correlation structure, we use identity link function and have

Var(𝛽2 ) = 𝜆3

Knm

(
p1(1 − p1)

𝜋
+

p0(1 − p0)
1 − 𝜋

)
, (2)

where ni ≡ n and the eigenvalue 𝜆3 = 1 + (K − 1)r + K(n − 1)𝜌. If we consider the log link function, then

Var(𝛽2 ) = 𝜆3

Knm

(
1 − p1

𝜋p1
+

1 − p0

(1 − 𝜋) p0

)
. (3)

Using the logit link function in the GEE model for a binary outcome, we have

Var(𝛽2 ) = 𝜆3

Knm

(
1

𝜋p1(1 − p1)
+ 1

(1 − 𝜋) p0(1 − p0)

)
. (4)

Please note that Equation (4) is the same as the formula in section 4.4 in the work of Teerenstra et al25 and reduces to
Equation (8) 27 when K = 1.

From the relationship between 𝛽2 and RD, the asymptotic variance of R̂D is

Var(R̂D) = 𝜆3

Knm

(
p1(1 − p1)

𝜋
+

p0(1 − p0)
1 − 𝜋

)
. (5)

Applying the delta method, we obtain the asymptotic variances of R̂R and ÔR as

Var(R̂R) = 𝜆3

Knm

(
1 − p1

𝜋p1
+

1 − p0

p0 (1 − 𝜋)

)
exp

(
2p1

p0

)
(6)
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and
Var(ÔR) = 𝜆3

Knm

(
1

𝜋p1(1 − p1)
+ 1

(1 − 𝜋) p0(1 − p0)

)
exp

(
2p1∕ (1 − p1)
p0∕ (1 − p0)

)
. (7)

3 LOCALLY OPTIMAL DESIGN

Assume the study cost per practice is c currency units (eg, US dollars), each provider costs s currency units, and e denotes
each participant's cost. The total budget B in a three-level trial is defined as

B = m(c + sn + eKn). (8)

We aim to find the OD given the constraint in Equation (8). The term “optimal” refers to the variance of each measure
estimator being minimized for a given sampling budget.10,17,28,29

First, we assume that provider size K is a predetermined value, similarly as B, c, s, and e, for simplicity. The goal is to
find the pair of m and n that minimizes the variance of each measure, which is equivalent to maximizing

L = Knm
𝜆3

(9)

for all three measures (RD, RR, and OR). Substituting m = B
c+(s+eK)n

gives

L = KnB
𝜆2c + (𝜆2b + K𝜌c)n + Kb𝜌n2 ,

where b = s + eK. Taking the partial derivatives with respect to n gives
𝜕L
𝜕n

∝ 𝜆2c − Kb𝜌n2.

Since Riw(r, ρ) is PD, 𝜆2 is positive. It can be shown that when

n =
√

𝜆2c
Kb𝜌

, (10)

where 𝜌 should be positive, the derivatives are equal to 0, and L is maximized. The LOD is reached for a known pair value
(r, ρ), and n in Equation (9) is denoted by nLOD. Let 𝜗 = 𝜆2

K𝜌
, the parameters in LOD are then given by

nLOD =
√

𝜗c
b
, mLOD = B√

𝜗bc + c
. (11)

Please note that 𝜌 < [1+(K−1)r]c
K(c+s+eK)

in order to be nLOD > 1. Thus, 0 < 𝜌 < min
(

1+(K−1)r
K

, [1+(K−1)r]
K

c
(c+s+eK)

)
= [1+(K−1)r]c

K(c+s+eK)
since

Equation (1) also holds. For any measures (RD, RR, or OR), the LOD is the same even if the variance of the measure
estimator is different. Obviously, nLOD and mLOD may be a noninteger. In reality, we need to choose an integer value for
practice size with either nup = int (nLOD)+1 or ndown = int (nLOD), where “int” refers to an integer part of a number. We
then calculate mup and mdown from m = B

c+(s+eK)n
. Similarly, mup and mdown are most likely nonintegers. In order to meet

the budget limit, the integer parts for mup and mdown are taken as values of the corresponding number of practices. Then,
we can calculate the corresponding L using Equation (9), and the proposed optimal practice size and number of practices
is the one with the larger L.

Second, when the provider size K is not a fixed value but within a range (Kmin, Kmax) and Kmin ≥ 2, we find nLOD and mLOD
for each value of K within this range and calculate the corresponding L in Equation (9). The design with the maximum
of L within a range (Kmin, Kmax) is defined as the LOD. Given

nLODmLOD = B√
b
(√

b +
√

c
𝜗

) ,
it is easy to show that both KnLODmLOD and 𝜆3 are increasing functions of K, but KnLODmLOD ∝

√
K and 𝜆3 ∝ K when

K ≥ 3. That is, L decreases when K increases for K ≥ 3. Therefore, the LOD is reached at K = Kmin if Kmin ≥ 3 and K = 3 if
Kmin = 2 for a known pair value (r, ρ).

Table 1 shows an example to determine the LOD for r = 0.6 and ρ = 0.03, where 3 ≤ K ≤ 10, B = 300 000, c = 10 000,
s = 100, and e = 10 are assumed. For each K, n and m are calculated from Equation (11). Both integers are chosen as
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TABLE 1 Locally optimal design for B = 300 000, c = 10 000, s = 100, and
e = 10 with known correlations r = 0.6 and 𝜌 = 0.03

K Practice Number of L Flag Powera Powerb Powerc

Size n Practices m

3 43 18 388.3 1 0.871 0.850 0.859
4 40 18 385.0 0.868 0.847 0.856
5 39 18 385.7 0.869 0.848 0.857
6 37 18 381.3 0.865 0.844 0.853
7 36 18 379.6 0.863 0.842 0.851
8 34 18 373.2 0.858 0.836 0.845
9 33 18 370.2 0.855 0.833 0.843
10 32 18 366.9 0.852 0.830 0.839

n and m are calculated from Equation (11).
L is calculated from Equation (9).
Flag = 1 refers to locally optimal design.
aRisk difference for p0 = 0.3 and p1 = 0.45.
bRisk ratio for p0 = 0.3 and p1 = 0.45.
cOdds ratio for p0 = 0.3 and p1 = 0.45.

discussed previously, and the corresponding L is calculated from Equation (9). The design with K = 3, n = 43, and m = 18
is the LOD since L is maximized at K = 3. Please note L is not monotonically decreasing in Table 1 since the calculations
are provided for (n, m) as integers only. The power estimates for RD, RR, and OR are provided for p0 = 0.3 and p1 = 0.45.
It definitely demonstrates that the power is maximized, equivalently minimizing the variance, when the LOD is reached.

4 MAXIMIN OPTIMAL DESIGN

First, we still assume that the provider size K is a predetermined value. Obviously, nLOD in Equation (11) depends on
(r, ρ). In practice, the pair value of (r, ρ) could be unknown before a study starts. If the ranges, (rmin, rmax) and (𝜌min, 𝜌max),
can be obtained from previous studies or other literature, then we define them as the parameter space.30,31 The range of
practice size based on practical feasibility, (nmin, nmax), is defined as the design space.17,32,33 The objective is to identify the
OD within the parameter and design spaces.

Inserting (11) in (5)-(7) gives the variance of each measure estimator for the OD. For example,

Var(R̂D) = g(r, ρ) × 1
B

(
p1(1 − p1)

𝜋
+

p0(1 − p0)
1 − 𝜋

)
, (12)

where g(r, ρ) =
(√

𝜌c +
√

1+(K−1)r−K𝜌

K
(s + eK)

)2

.

Following the same definition of RE,17 the ratio of the variance of each measure estimator for practice size nLOD to n,
we use Equations (5), (8), and (12) and then define RE for measure RD as a function of n, r, and ρ, ie,

RE(n, r, ρ) =
g(r, ρ)

1 + (K − 1) r + K(n − 1)𝜌
× Kn

c + (s + eK)n
. (13)

It is easy to show that REs for both the RR and OR measures are the same as Equation (13). Furthermore, the maximal
value of RE(n, r, ρ) is 1 and reached when n is nLOD. Figure 1 shows how RE changes across practice size n for a fixed
r, and Figure 2 shows the trend of RE over practice size n for a fixed 𝜌, where K = 3, B = 300 000, c = 10 000, s = 100,
and e = 10. Both Figures demonstrate that RE increases until it reaches 1 and then decreases as practice size n increases.
Among the four REs with the different values of ρ in Figure 1, we observe that the practice size n at which RE is equal to
1 is the smallest when ρ = 0.7 and the largest when ρ = 0.1. Similarly, we notice that the practice size n at which RE is
equal to 1 is the smallest when r = 0.1 and the largest when r = 0.7 in Figure 2.

MMD is a design that maximizes some measure of performance (or minimize the risk) in the worst case scenario.31-34

Here, we use RE, quantified as Equation (13), as the measure of performance. Specifically, the MMD includes three steps.
Step 1 defines the parameter and design spaces, Step 2 computes the LOD for each pair value of (r, ρ) in the parameter
space and then computes the RE of each design in the design space, and Step 3 finds its smallest RE value within the
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FIGURE 1 Relative efficiencies RE(n, r, 𝜌) as a function of n for K = 3, B = 300 000, c = 10 000, s = 100, and e = 10 with r = 0.8 [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Relative efficiencies RE(n, r, 𝜌) as a function of n for K = 3, B = 300 000, c = 10 000, s = 100, and e = 10 with 𝜌 = 0.05 [Colour
figure can be viewed at wileyonlinelibrary.com]

parameter space for each design in the design space and selects the design that maximizes the minimum RE among all
designs in the design space. This MMD considers the worst case scenario and, thus, is robust against misspecification of
the values of (r, ρ).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Relative efficiencies RE(n, rmin, 𝜌min), RE(n, rmin, 𝜌max), RE(n, rmax, 𝜌min), and RE(n, rmax, 𝜌max) as a function of n and locally
optimal designs LOD(rmin, 𝜌max) and LOD(rmax, 𝜌min) for K = 3, B = 300 000, c = 10 000, s = 100, and e = 10 with parameter space
(rmin = 0.1, rmax = 0.9) and (𝜌min = 0.01, 𝜌max = 0.05). MMD, MaxiMin design [Colour figure can be viewed at wileyonlinelibrary.com]

The RE of any of the three measures, shown in Equation (13), is a function of n, r, and ρ given the costs c per practice,
s per provider, e per participant, and the provider size K. First, Appendix A.1 proves that RE(n, r, ρ) is minimized at
one of the four points, namely, (rmin, 𝜌min), (rmin, 𝜌max), (rmax, 𝜌min), (rmax, 𝜌max), ie, the boundary of the parameter space
(rmin, rmax) and (𝜌min, 𝜌max). Figure 3 presents RE(n, rmin, 𝜌min), RE(n, rmin, 𝜌max), RE(n, rmax, 𝜌min), and RE(n, rmax, 𝜌max) as
functions of n for K = 3, B = 300 000, c = 10 000, s = 100, and e = 10 with parameter space (rmin = 0.1, rmax = 0.9) and
(𝜌min = 0.01, 𝜌max = 0.05). Next, Appendix A.2 shows that the minimum of RE(n, r, ρ) is maximized by the design satisfying
RE(n, rmin, 𝜌max) = RE(n, rmax, 𝜌min). Let n̂ be a solution of RE(n, rmin, 𝜌max) = RE(n, rmax, 𝜌min) and expressed as

[1 + (K − 1) rmax − K𝜌min] g(rmin, 𝜌max) − [1 + (K − 1) rmin − K𝜌max] g(rmax, 𝜌min)
K(𝜌maxg(rmax, 𝜌min) − 𝜌ming(rmin, 𝜌max))

. (14)

As shown in Figure 3, the black vertical straight line indicates n̂, and LODs for (rmin, 𝜌max) and (rmax, 𝜌min) are added as
references. By dividing g(rmin, 𝜌max) and g(rmax, 𝜌min) by the study cost per practice c, we notice that MMD of practice sizes
depends on (rmin, 𝜌max), (rmax, 𝜌min), and ratio (s + eK)/c. That is, the total budget B determines the number of practices m
but not practice size n.

Now, we provide a step-by-step approach to find an MMD for a two-arm three-level CRT with a binary outcome when
the provider size K is a predetermined value.

Step 1: Define the parameter space (rmin, rmax), (𝜌min, 𝜌max) and design space (nmin, nmax), respectively.
Step 2: Calculate n̂ using Equation (14).

(A) If it is within the range (nmin, nmax), then set nMMD = n̂ and the corresponding mMMD = int
(

B
c+(s+eK)nMMD

)
.

(B) If it is outside of (nmin, nmax), calculate RE(n, rmin, 𝜌min), RE(n, rmin, 𝜌max), RE(n, rmax, 𝜌min), and RE(n, rmax, 𝜌max)
for each practice size n ∈ (nmin, nmax) and take their minimum. Choose the design of (n,m) that has the maximum
of minimum RE within the design space, where m = int

(
B

c+(s+eK)n

)
.

Again, n̂ may be a noninteger. We use the same method in Section 3 to get the integer practice size and number of practices.
Please note that Equation (13) is derived using Equation (8) as well. If the calculated mMMD from the above approach is
infeasible, then the range (nmin, nmax) needs to be revised appropriately.

http://wileyonlinelibrary.com
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TABLE 2 MaxiMin design for K = 3, B = 300 000, c = 10 000, s = 100, and e = 10 with parameter space (rmin = 0.1, rmax = 0.9) and
(𝜌min = 0.01, 𝜌max = 0.05)

Design Space Practice RE(n, rmin,𝝆min) RE(n, rmin,𝝆max) RE(n, rmax,𝝆min) RE(n, rmax,𝝆max) Min RE Number of Flag
(nmin, nmax) Size n Practices m
(11, 20) 11 0.5642 0.9059 0.4090 0.7346 0.4090 26

12 0.5966 0.9257 0.4369 0.8656 0.4369 25
13 0.6288 0.9421 0.4636 0.7935 0.4636 25
14 0.6550 0.9556 0.4892 0.8184 0.4892 25
15 0.6813 0.9667 0.5136 0.8408 0.5136 25
16 0.7059 0.9757 0.5369 0.8609 0.5369 24
17 0.7287 0.9829 0.5592 0.8788 0.5592 24
18 0.7501 0.9886 0.5806 0.8949 0.5806 24
19 0.7700 0.9929 0.6010 0.9093 0.6010 24
20 0.7886 0.9961 0.6205 0.9221 0.6205 23 1

(41, 50) 41 0.9799 0.9441 0.8809 0.9975 0.8809 19
42 0.9831 0.9394 0.8881 0.9963 0.8881 19
43 0.9859 0.9347 0.8950 0.9949 0.8950 19
44 0.9884 0.9299 0.9016 0.9932 0.9016 19
45 0.9907 0.9251 0.9079 0.9913 0.9079 18
46 0.9926 0.9202 0.9138 0.9893 0.9138 18
47 0.9943 0.9154 0.9195 0.9872 0.9154 18 1
48 0.9958 0.9105 0.9249 0.9849 0.9105 18
49 0.9970 0.9056 0.9301 0.9825 0.9056 18
50 0.9980 0.9008 0.9350 0.9799 0.9008 18

Relative efficiency (RE) is calculated from Equation (13).
Flag = 1 refers to MaxiMin design.

TABLE 3 MaxiMin design for B = 300 000, c = 10 000, s = 100,
and e = 10 with parameter space (rmin = 0.1, rmax = 0.9) and
(𝜌min = 0.01, 𝜌max = 0.05)

Design Space K Practice Number of RE Flag
(nmin, nmax) Size n Practices m
(11, 20) 3 20 23 0.6205

4 20 23 0.6369
5 20 23 0.6517
6 20 22 0.6653
7 20 22 0.6781
8 20 22 0.6901
9 20 21 0.7014

10 20 21 0.7121 1
(41, 50) 3 47 18 0.9154 1

4 43 18 0.9032
5 41 18 0.8876
6 41 18 0.8638
7 41 17 0.8421
8 41 17 0.8222
9 41 16 0.8037

10 41 16 0.7866

n and m are calculated from the step-by-step approach.
Relative efficiency (RE) is calculated from Equation (13).
Flag = 1 refers to MaxiMin design.

Table 2 shows an example to determine MMD, where the same setting as Figure 3 is assumed. We obtain n̂ = 46.6 using
Equation (13). If the design space is (11, 20), then the design of (n = 20, m = 23) is MMD under the budget constraints; on
the other hand, if the design space is (41, 50), then the design of (n = 47, m = 18) is MMD under the budget constraints.

Second, when the provider size K is not a fixed value but within a range (Kmin, Kmax) and Kmin ≥ 2, we find nMMD and
mMMD for each value of K within this range and calculate the corresponding RE in Equation (13). The design with the
maximum of RE is defined as MMD.
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TABLE 4 MaxiMin design for B= 300 000, c = 10 000, s = 100, and e= 10 with 3≤ K ≤ 10

Design Space rmin rmax 𝝆min 𝝆max K Practice Number of RE
(nmin, nmax) Size n Practices m
(2, 20) 0.1 0.9 0.01 0.05 10 20 21 0.7121

0.1 0.3 0.01 0.05 10 20 21 0.8717
0.3 0.6 0.01 0.05 10 20 21 0.7754
0.6 0.9 0.01 0.05 10 20 21 0.7121
0.1 0.9 0.01 0.02 10 20 21 0.7121
0.1 0.9 0.02 0.03 10 20 21 0.8365
0.1 0.9 0.02 0.05 10 20 21 0.8365
0.1 0.9 0.03 0.05 10 20 21 0.9031

(2, 50) 0.1 0.9 0.01 0.05 3 47 18 0.9154
0.1 0.3 0.01 0.05 3 41 19 0.9441
0.3 0.6 0.01 0.05 3 47 18 0.9446
0.6 0.9 0.01 0.05 4 50 17 0.9446
0.1 0.9 0.01 0.02 5 49 17 0.9466
0.1 0.9 0.02 0.03 5 43 19 0.9751
0.1 0.9 0.02 0.05 3 41 19 0.9441
0.1 0.9 0.03 0.05 3 41 19 0.9441

Abbreviation: RE, relative efficiency.

Table 3 demonstrates how to find MMD with parameter space (rmin = 0.1, rmax = 0.9) and (𝜌min = 0.01, 𝜌max = 0.05),
where 3 ≤ K ≤ 10, B = 300 000, c = 10 000, s = 100, and e = 10 are assumed. For each K, nMMD and mMMD are calculated
from the step-by-step approach, and the corresponding RE is provided. If the design space is (11, 20), then the design
of (K = 10, n = 20, m = 21) is MMD under the budget constraints; on the other hand, if the design space is (41, 50),
then the design of (K = 3, n = 47, m = 18) is MMD under the budget constraints. SAS macros %OD_3Level_FixedK and
%OD_3Level_RangeK are developed to find LOD and MMD when the corresponding parameters are provided.

Last, we conduct a sensitivity analysis about the parameter space. The following eight different parameter spaces are
considered: (rmin = 0.1, rmax = 0.9) and (𝜌min = 0.01, 𝜌max = 0.05), (rmin = 0.1, rmax = 0.3) and (𝜌min = 0.01, 𝜌max = 0.05),
(rmin = 0.3, rmax = 0.6) and (𝜌min = 0.01, 𝜌max = 0.05), (rmin = 0.6, rmax = 0.9) and (𝜌min = 0.01, 𝜌max = 0.05),
(rmin = 0.1, rmax = 0.9) and (𝜌min = 0.01, 𝜌max = 0.02), (rmin = 0.1, rmax = 0.9) and (𝜌min = 0.02, 𝜌max = 0.03),
(rmin = 0.1, rmax = 0.9) and (𝜌min = 0.02, 𝜌max = 0.05), and (rmin = 0.1, rmax = 0.9) and (𝜌min = 0.03, 𝜌max = 0.05). We still
assume 3 ≤ K ≤ 10, B = 300 000, c = 10 000, s = 100, and e = 10. Table 4 shows the MMDs for two different design spaces
(2, 20) and (2, 50). If nmax is relatively small, eg, < n̂, then MMDs are the same (K = 10, n = 20, m = 21). They might be
different otherwise. That is, MMDs are insensitive to the parameter space when the maximum of practice size is relatively
small.

5 EXAMPLE

Teerenstra et al discussed the Helping Hands trial (Netherlands Organization for Health Research and Development
ZonMw, grant number 80–007028–98-07101).25 This study aimed to change nurse behavior through two strategies and
randomized the wards to either strategy. The two strategies included the state-of-the-art strategy, which is derived from
literature regarding education, reminders, feedback, and targeting adequate products and facilities, and the extended
strategy, which contains all elements of the state-of-the-art strategy plus activities aimed at influencing social influence
in groups and enhancing leadership. The primary endpoint was adherence to hygiene guidelines (Yes vs. No), and multi-
ple evaluations of nurses' guideline adherence were observed. The researchers expected to improve the adherence from
60% in the state-of-the-art strategy to 70% in the extended strategy. Teerenstra et al considered the constant behavior
of nurse r = 0.6 and intraward coefficient correlation 𝜌 = 0.03.25 We calculated the total number of wards m = 58 to
obtain 80% power using the number of nurses per ward n = 15 and the number of evaluations K = 3 under the same
assumptions of (r, 𝜌) using Equation (4). We assume c = 2000, s = 50, and e = 10 in this study, then the total cost of
58× (2000 + 50× 15 + 10× 3× 15) = 185 600 will be needed.

We now apply LOD and MMD approaches to redesign this study with the same budget of B = 185 600. We consider
3 ≤ K ≤ 6 and find that LOD is K = 3, n = 25, and m = 46. The power is 83.7% under this scenario. It is worth mention-
ing that our proposed method does not guarantee obtaining the desired power, eg, 80%, but to have the highest power
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under the budget constraints. Researchers should increase the budget if our proposed method does not reach the desired
power.

On the other hand, if the researchers have no clear picture of these two associations, then the parameter space need to
be specified. Campbell et al showed the ICC interquartile range of implantation studies in secondary care from 0.017 to
0.221.3 As Teerenstra et al mentioned, the behavior of an individual nurse with respect to hand hygiene is constant; the
parameter space 0.5 ≤ r ≤ 0.9 is reasonably assumed. Now, the parameter space lies within (rmin = 0.5, rmax = 0.9) and
(𝜌min = 0.017, 𝜌max = 0.221), and the design space is set as (3, 50), then the number of evaluations K = 3, the number of
nurses per ward n = 17, and the total number of wards m = 55 is our proposed MMD given the budget of B = 185 600.

6 DISCUSSION

In this paper, we have presented ODs based on GEE models in three-level CRTs and proposed both LODs and MMDs
under budget constraints. We employed a nested exchangeable correlation structure25 and derived the variance of the
treatment effect under the assumption of an equal practice size and the same provider size. We derived the LOD when the
correlation among participants within the same provider in the same practice, r, and correlation among participants with
different providers in the same practice, 𝜌, are known; the LOD aims to minimize the variance of each measure estimator
for a given sampling budget. If the correlation pair (r, 𝜌) is unknown but lies in a known range, we proposed MMDs for
three-level CRTs for a range of r and 𝜌. We also developed SAS macros to find the LOD and MMD for practical use.

Our method can be extended in several directions. First, our proposed approach is based on the nested exchange-
able correlation structure only. It is suitable when the lowest-level units are exchangeable within the middle-level units
(“providers”) and the middle-level units are exchangeable within the highest-level units (“practices”).25 We will consider
more sophisticated settings, eg, a longitudinal data setting with AR(1) correlation among repeated measures over time
in our future work. Second, we assume the same practice size and the same provider size. If the practice size is differ-
ent across providers, the variances of the estimator of treatment effects are more complicated than Equations (2)-(4). The
derivation of these formulas warrants further research. Third, when GEE models with the identity or log link are used to
analyze correlated binary data, convergence issues may occur since the predicted probability is unconstrained. Fourth,
the empirical sandwich estimator of the covariance matrix obtained from GEE is biased for a small number of clusters
and, thus, can inflate type I error rates. The proposed LOD and MMD based on the asymptotic variance might be worthy
of further investigation. Finally, it merits further consideration to extend treatment groups to more than two.
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APPENDIX

The proof consists of two steps. Appendix A.1 shows that RE(n, r, ρ) is minimized at one of the four points,
namely, (rmin, 𝜌min), (rmin, 𝜌max), (rmax, 𝜌min), (rmax, 𝜌max), ie, the boundary of the parameter space (rmin, rmax) and
(𝜌min, 𝜌max). Next, Appendix A.2 shows that the minimum of RE(n, r, ρ) is maximized by the design satisfying
RE(n, rmin, 𝜌max) = RE(n, rmax, 𝜌min).

A.1 Proof that RE(n, r, 𝛒) is minimized at one of the four points: (rmin,𝝆min), (rmin,𝝆max),
(rmax,𝝆min), (rmax,𝝆max) within the parameter space (rmin, rmax) and (𝝆min,𝝆max)
From Equations (5), (8), and (12), it follows that the RE for measure RD as a function of n, r, and ρ for any of the three
measures is

RE(n, r, ρ) =
g(r, ρ)

1 + (K − 1) r + K (n − 1) 𝜌
× Kn

c + (s + eK)n
.

Taking the partial derivative with respect to ρ gives

𝜕RE(n, r, ρ)
𝜕ρ

∝
⎧⎪⎨⎪⎩
⎡⎢⎢⎣
√

c
𝜌
−

√
K(s + eK)

1 + (K − 1) r − K𝜌

⎤⎥⎥⎦ [1 + (K − 1) r + K(n − 1)𝜌]

−

(√
𝜌c +

√
1 + (K − 1) r − K𝜌

K
(s + eK)

)
K(n − 1)

⎫⎪⎬⎪⎭ .

Setting the right-hand side to zero, we obtain

𝜌∗ =
c[1 + (K − 1) r]

K[c + (s + eK)n2]
.

Then, taking the partial derivative with respect to r gives

𝜕RE(n, r, ρ)
𝜕r

∝ [1 + (K − 1) r + K(n − 1)𝜌]
√

s + eK
K [1 + (K − 1) r − K𝜌]

−

(√
𝜌c +

√
1 + (K − 1) r − K𝜌

K
(s + eK)

)
.

Similarly, we set the right-hand side to zero and obtain

r∗ =
K𝜌[c + (s + eK)n2] − c

c(K − 1)
.

Both are actually the same as nLOD in Equation (10). We can show that 𝜕RE(n,r,ρ)
𝜕ρ

> 0 if 𝜌min ≤ 𝜌 < 𝜌∗ and 𝜕RE(n,r,ρ)
𝜕ρ

< 0 if
𝜌∗ < 𝜌≤ 𝜌max; hence, RE(n, r, ρ) is minimized at either 𝜌= 𝜌min or 𝜌= 𝜌max for a fixed r. If we assume the possible range for
𝜌 is (0.1, 0.7) and r = 0.8, Figure A1 demonstrates a three-dimensional RE plot as a function of n and ρ, whereas Figure 1
shows the RE plots for four paired values (r, ρ). As seen in Figure 1, RE(n, r, ρ) is minimized at 𝜌 = 0.1 when n < 13 and at
𝜌= 0.7 when n > 13. Similarly, 𝜕RE(n,r,ρ)

𝜕r
> 0 if rmin ≤ r < r∗ and 𝜕RE(n,r,ρ)

𝜕r
< 0 if r∗ < r ≤ rmax; hence, RE(n, r, ρ) is minimized

at either r = rmin or r = rmax for a fixed 𝜌. Figure A2 demonstrates a three-dimensional RE plot as a function of n and r,
r ∈ (0.1, 0.7), for a fixed 𝜌 = 0.05. As shown in Figure 2, with 𝜌 = 0.05, RE(n, r, ρ) is minimized at r = 0.7 when n < 28 and
r = 0.1 when n < 28. When combining these characteristics, we conclude that RE(n, r, ρ) is minimized at (rmin, 𝜌min), or
(rmin, 𝜌max), or (rmax, 𝜌min), or (rmax, 𝜌max) within the parameter space (rmin, rmax) and (𝜌min, 𝜌max).

https://doi.org/10.1002/sim.8153
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FIGURE A1 Three-dimensional relative efficiencies RE(n, r, 𝜌) as a function of n and 𝜌 for K = 3, B = 300 000, c = 10 000, s = 100, and
e = 10 with r = 0.8 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE A2 Three-dimensional relative efficiencies RE(n, r, 𝜌) as a function of n and r for K = 3, B = 300 000, c = 10 000, s = 100, and
e = 10 with 𝜌 = 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]
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A.2 Proof that the minimum of RE(n, r, 𝛒) is maximized by the design satisfying
RE(n, rmin,𝝆max) = RE(n, rmax,𝝆min)
Inserting (rmin, 𝜌min) in Equation (12) and taking the partial derivative with respect to n gives

𝜕RE(n, rmin, 𝜌min)
𝜕n

∝ ac − Kb𝜌n2.

Following the proof in Section 3, RE(n, rmin, 𝜌min) is a single-peaked function and maximized at

n(rmin,𝜌min) =

√
1 + (K − 1) rmin − K𝜌min

K𝜌min
× c

b

with a maximum of 1. Similarly, RE(n, rmin, 𝜌max) is maximized at

n(rmin,𝜌max) =

√
1 + (K − 1) rmin − K𝜌max

K𝜌max
× c

b
,

RE(n, rmax, 𝜌min) is maximized at

n(rmax,𝜌min) =

√
1 + (K − 1) rmax − K𝜌min

K𝜌min
× c

b
,

and RE(n, rmax, 𝜌max) is maximized at

n(rmax,𝜌max) =

√
1 + (K − 1) rmax − K𝜌max

K𝜌max
× c

b
.

Since 𝜌min < 𝜌max, it gives n(rmin,𝜌min) > n(rmin,𝜌max) and n(rmax,𝜌min) > n(rmax,𝜌max). Furthermore, rmin < rmax is followed by
n(rmin,𝜌min) < n(rmax,𝜌min) and n(rmin,𝜌max) < n(rmax,𝜌max). Thus, n(rmin,𝜌max) is the smallest, and n(rmax,𝜌min) is the largest. All four
REs have a maximum of 1, and the maximums are reached at n(rmin,𝜌min), n(rmin,𝜌max), n(rmax,𝜌min), and n(rmax,𝜌max), respec-
tively. Following the proof in the appendix of Breukelen et al,20 the minimum RE between any two of RE(n, rmin, 𝜌min),
RE(n, rmin, 𝜌max), RE(n, rmax, 𝜌min), and RE(n, rmax, 𝜌max) is maximized by the design satisfying these two REs are
equal. For example, the minimum RE for RE(n, rmin, 𝜌min) and RE(n, rmin, 𝜌max) is maximized by the design satisfying
RE(n, rmin, 𝜌min) = (n, rmin, 𝜌max). For any two pair values, (r0, 𝜌0) and (r1, 𝜌1), the intersection means

RE(n, r0, 𝜌0) = RE(n, r1, 𝜌1)
yields
−−−−−→

g(r0, 𝜌0)
1 + (K − 1) r0 + K (n − 1) 𝜌0

=
g(r1, 𝜌1)

1 + (K − 1) r1 + K(n − 1)𝜌1
.

Its only solution is

n =
[1 + (K − 1) r1 − K𝜌1] g(r0, 𝜌0) − [1 + (K − 1) r0 − K𝜌0] g(r1, 𝜌1)

K (𝜌0g(r1, 𝜌1) − 𝜌1g(r0, 𝜌0))
.

That is, there is only one intersection between any two RE(n, r, ρ)'s in the function of n. Therefore, there are a total of six
intersections across these four REs. For example, Figure 3 demonstrates REs at the four points and all six intersections.
Given all facts that these four are single-peaked functions, n(rmin,𝜌max) is the smallest and n(rmax,𝜌min) is the largest, and the only
one intersection between any two REs, it is obvious that the minimum of RE(n, r, ρ) for these six intersections is reached
at the intersection of RE(n, rmin, 𝜌max) = RE(n, rmax, 𝜌min). In other words, the minimum of RE(n, r, ρ) is maximized by the
design satisfying RE(n, rmin, 𝜌max) = RE(n, rmax, 𝜌min).
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