We can prevent more than half of cancer now: An update on evidence including weight gain and breast cancer

Canadian Cancer Research Conference, Montreal, Canada

November 9 2015

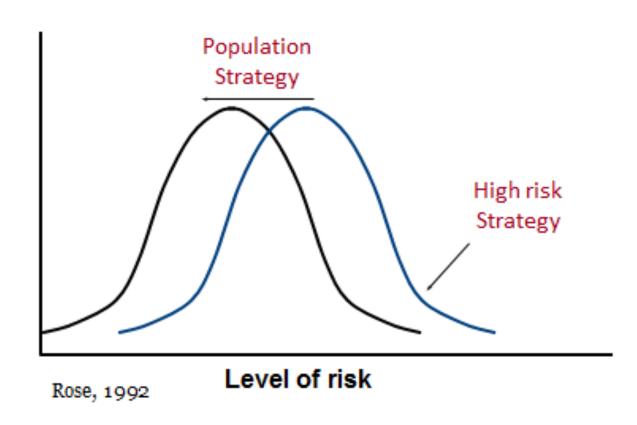
Graham A. Colditz, MD DrPH, FAFPHM Department of Surgery Division of Public Health Sciences

Goals of talk

Review potential for cancer prevention

Consider time frame and next steps to achieve sustained cancer prevention

Issues/Lessons:


- Improving cancer prevention,
- Implementing what we know,
- Integrating risk factors across life course, and
- Clarifying our time frame is essential to achieving our goals.

Medical interventions proven to prevent cancer (Colditz et al. Sci Trans Med 2012)

Intervention	Target	Magnitude of reduction	Time (yrs)
Aspirin	Colon mortality	40%	20+
SERMs	Breast incidence	40-50%	5+
Salpingo oophorectomy	Familial breast ca	50%	3+
Screening for colorectal ca	Colon ca mortality	30-40%	10
Vaccination	Cervical ca incidence	50-100%	20+
	Liver ca incidence	70-100%	20+
Mammography	Breast ca mortality	30%	10-20
Serial CT lung	Lung ca mortality	20%	6+

Washington University in St.Louis • School of Medicine

Population approach versus high risk strategy

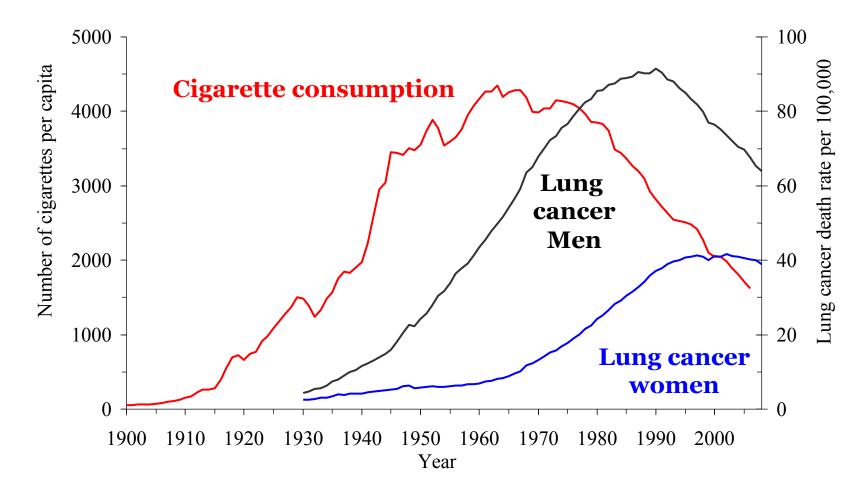
Washington University in St.Louis • School of Medicine

Behavioral, Social and Policy interventions that impact Cancer Prevention

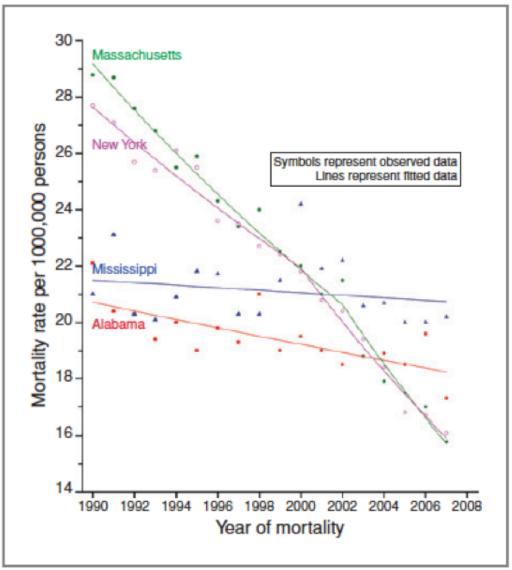
Intervention	Target	Type of Ix	Evidence review
Reduce tobacco use	Children and Adolescents Smokers to quit	Combined Pharmaco/ behavioral Ixs Smoke-free policies Tobacco taxes	Surgeon General, USA
Increase physical activity	Individuals and community norms	Urban design Stairs and workplace	Surgeon General, USA
Reduce Obesity	Population	School & work environment Physical activity Food & beverage	Inst. of Medicine report
Limit alcohol intake	Population	Taxes	WHO

ciences

When we implement what we know, we prevent cancer

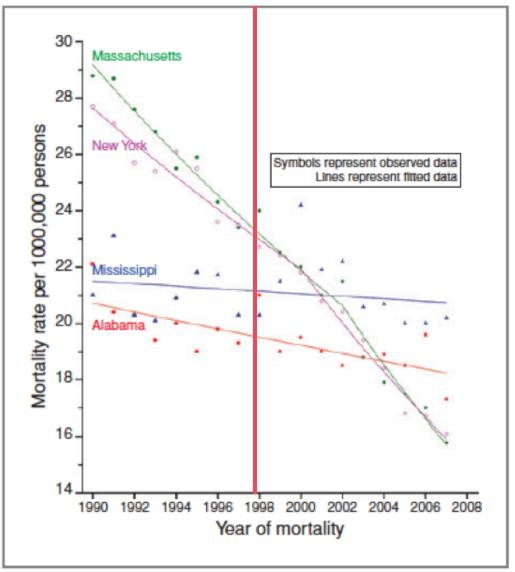

Tobacco –

lung cancer mortality decreased by one third


• Adolescent smoking decrease 35% (1999) to 18% (2011)

Colorectal cancer screening – steady increase in use and reduction in CRC mortality over time

Trends in smoking and lung cancer, USA



Trends: CRC mortality

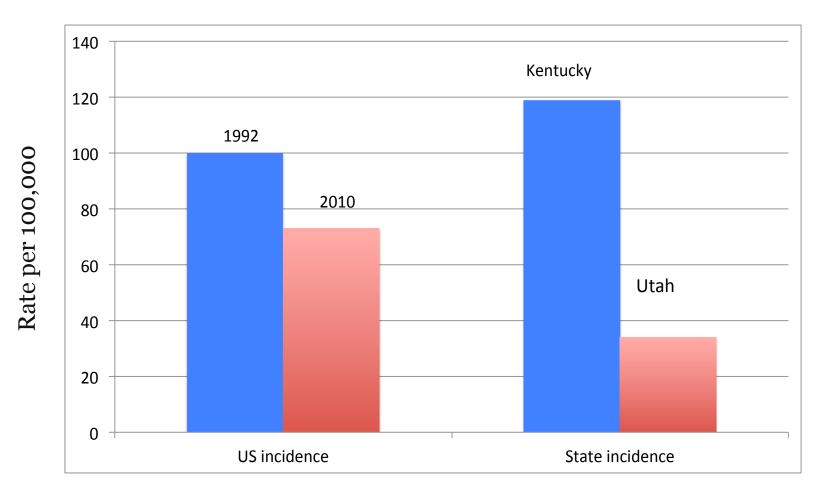
Naishadham et al CEBP 2011

Trends: CRC mortality

Naishadham et al CEBP 2011

Lifestyle: high income countries

	Cause	% cancer caused	Magnitude possible reduction	Time (yrs)	
	Smoking	33			
	Overweight/ obesity	20			
	Diet	5			
	Lack of exercise	5			
	Occupation	5			
	Viruses	5-7			
	Family history	5			
	Alcohol	3			
	UV/ionizing radiation	2	Colditz et al	. Sci Transl Med 2012: Ma	rch 28
	Reproductive	3			of Surgery
shit	Pollution	2			th Sciences


Wasl

Lifestyle: high income countries

Cause	% cancer caused	Magnitude possible reduction	Time (yrs)	
Smoking	33	75%		
Overweight/ obesity	20	50%		
Diet	5	50%		
Lack of exercise	5	85%		•
Occupation	5	50%		
Viruses	5-7	100%		
Family history	5	50%		
Alcohol	3	50%		
UV/ionizing radiation	2	50%		
Reproductive	3	0		of Surgery
ⁱⁱ Pollution	2	0		th Sciences

Wash Wash

Burden Cigarette Smoking, USA

Washington University in St.Louis • School of Medicine

Lifestyle: high income countries

	Cause	% cancer caused	Magnitude possible reduction	Time (yrs)	
	Smoking	33	75%	10-20	
	Overweight/ obesity	20	50%	2-20	
	Diet	5	50%	5-20	
	Lack of exercise	5	85%	5-20	•
	Occupation	5	50%	20-40	
	Viruses	5-7	100%	20-40	
	Family history	5	50%	2-10	
	Alcohol	3	50%	5-20	
	UV/ionizing radiation	2	50%	2-10	
	Reproductive	3	0	N/A	of Surgery
hir	Pollution	2	0	N/A	th Sciences

Wash Wash

	Risk of Cancer with Increased BMI								
Cancer	Sample Size	Follow-up (yrs)	RR Men	RR Women					
Breast (premenopausal)	2.5 mil	11.0	-	0.92**					
Breast (postmenopausal)	2.5 mil	11.0	-	1.12***					
Colon	4.8 mil	11.0	1.24*	1.09*					
Endometrium	3.0 mil	10.6	-	1.59*					
Gallbladder	3.3 mil	12.7	1.09	1.59***					
Gastric	4.7 mil	10.8	0.97	1.04					
Leukemia	4.7 mil	13.7	1.08**	1.17***					
Liver	3.3 mil	12.7	1.24	1.07					
Lung	2.6 mil	11.9	0.76*	0.80***					
Multiple myeloma	5.2 mil	14.6	1.11*	-					
Non-Hodgkin Iymphoma	5.0 mil	12.4	1.06*	1.07					
Oesophageal adenocarcinoma	4.7 ml	10.8	1.52*	1.51*					

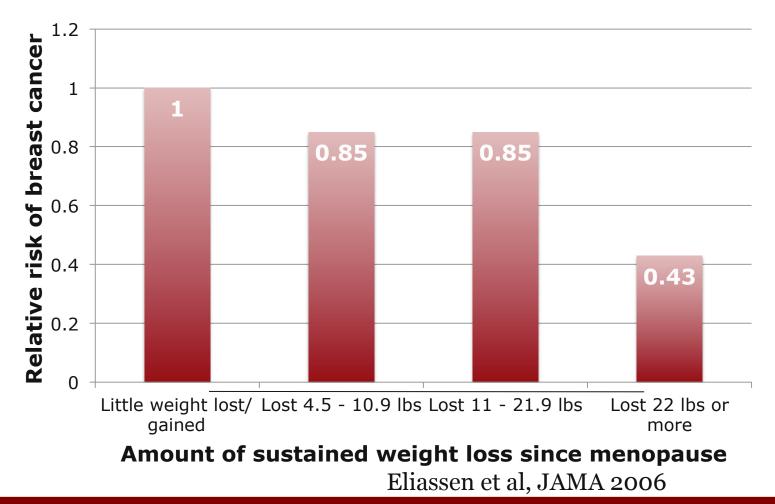
Relative risk for a 5 point increase in BMI. For example, the relative risk linked to a BMI of 28 compared to a BMI of 23; or a BMI of 32 compared to 27. *p < .001; **p < .01; **p < .01; **p < .05

Maintain a healthy weight

Weight loss lowers risk

Risk of breast cancer dropped by 60% in women who lost more than 10 kg (22 pounds) after menopause

Loss of just 5 pounds lowered risk by 15%


Eliassen et al JAMA 2006

Department of Surgery Division of Public Health Sciences

🕃 Washington University in St.Louis • School of Medicine

Sustained Weight Loss and Risk of Breast Cancer in Postmenopausal Women Who Never Used Postmenopausal Hormones

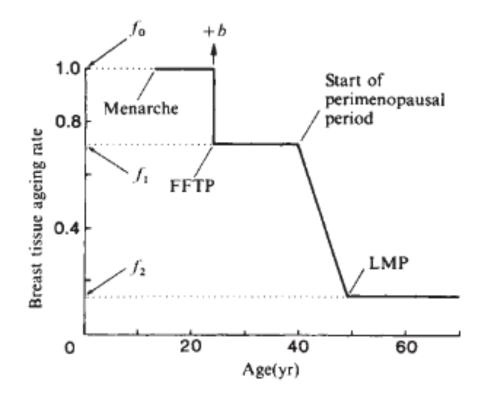
TREC – Cross TREC project

DISENTANGLING WEIGHT WEIGHT GAIN AND TIMING

U54 CA155496

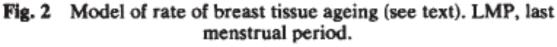
Washington University in St.Louis • School of Medicine

Risk factors account for 76% discrepancy China vs. US


- Compared age-specific incidence in Shanghai prospective cohort vs. SEER.
- Then fit Rosner-Colditz model to account for risk factors:

Age at menarche, age at first and subsequent births, height, weight at 18 and through adult life, alcohol, menopause, type of menopause (natural, surgical), use of postmenopausal hormone therapy (E alone, E+P), benign breast disease, family history breast ca.

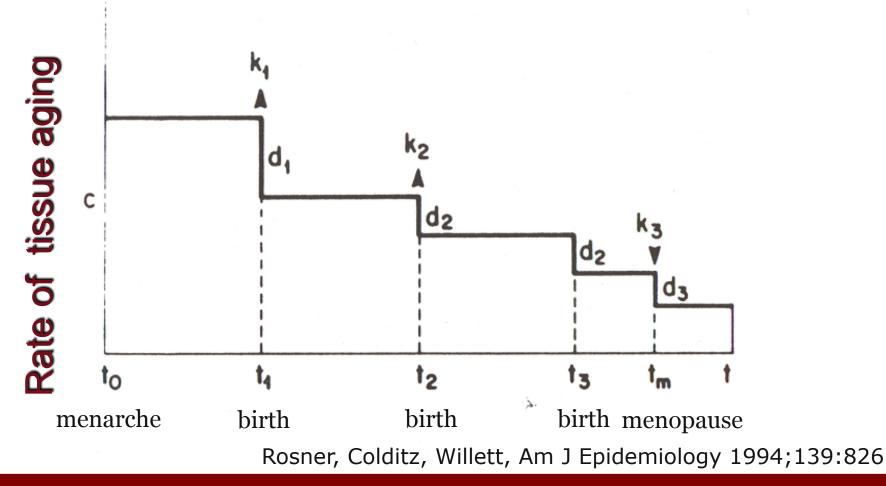
- 76% of the US excess incidence controlled away with the established risk factors.
- Leaves open the dynamics of growth, childhood and adolescence


Linos,...,Colditz JNCI 2008;100:1352-60

Pike model – Nature 1983

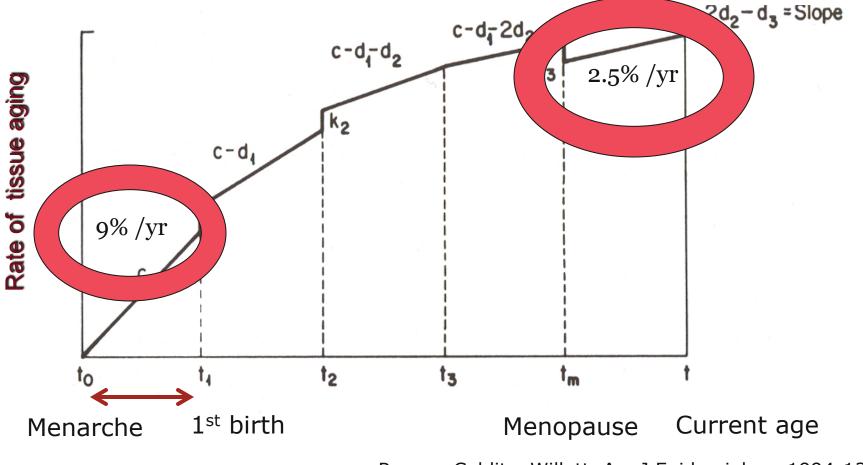
To accommodate the higher incidence with late first birth, we add a constant representing an increase in risk with FFTP

(+b) in figure



Pike, et al. Nature 1983

Department of Surgery Division of Public Health Sciences


Washington University in St.Louis • School of Medicine

Accumulating risk, multiple birth model

School of Medicine Washington University in St.Louis • School of Medicine

Accumulating risk, multiple birth model

Rosner, Colditz, Willett Am J Epidemiology 1994;139:826

Washington University in St.Louis • School of Medicine

Effects of obesity on breast cancer

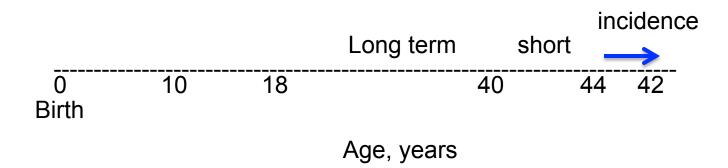
- Obesity is well-established as a risk factor for post-menopausal breast cancer.
- Obesity is protective for pre-menopausal breast cancer

<u>Short-term effects of weight gain on breast</u> <u>cancer incidence</u>

 Short-term effects of weight change on breast cancer risk are largely unknown

 We investigated short-term effects of obesity on breast cancer using NHS data

Study Population – Nurses' Health Study


 77, 232 women followed over 1,445,578 person-years from 1980-2008

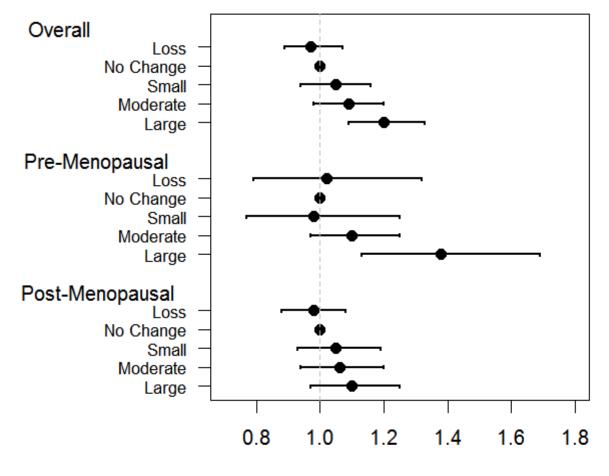
• 4,196 incident cases of invasive breast cancer

Rosner et al Breast Cancer Res Treat 2015

Analytical approach

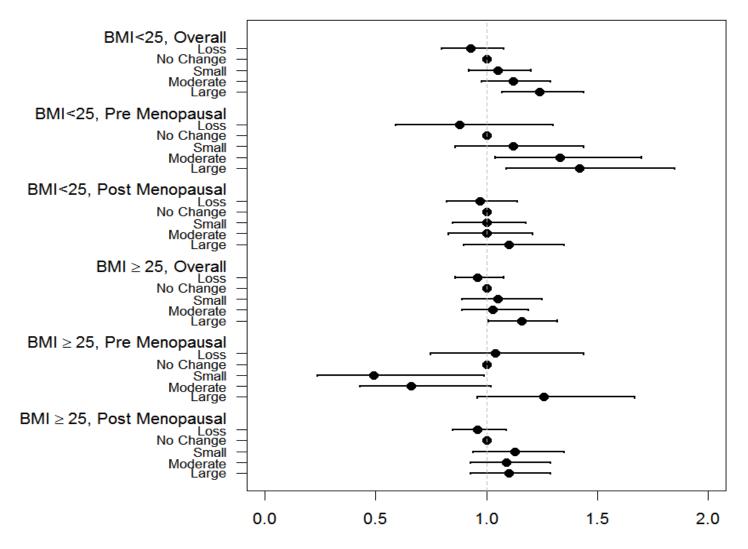
- Log incidence model of breast cancer (Colditz, et al AJE 2000) used to predict incident breast cancer as a function of
 - 1) Average BMI before menopause
 - 2) Average BMI after menopause
 - 3) Other breast cancer risk factors
- Short-term weight gain ≡ weight gain over previous 2 cycles (≈ 4 years) added as an additional risk factor

Association between 4-year weight change (1990-1994) and selected breast cancer risk factors in 1994, NHS, <u>45,009 women</u>


Variable		Wt loss of > 5lbs	No change	Wt gain of 5.1-9.9lbs	Wt gain of 10.0-14.9lbs	Wt gain of ≥ 15.0lbs
_	Ν	5,610	22,202	5,207	5,732	6,258
Age	Mean	61.8	60.8	59.6	58.8	57.9
Pre- menopausal	(%)	9	12	14	17	18
Weight at age 18	Mean	130.7	124.1	123.3	126.2	131.8
Current weight	Mean	153.2	147.1	152.4	164.5	185.4
Current HT use	(%)	35.9	43.6	45.5	44.2	44.1
Age at 1 st birth	Mean	25.5	25.3	25.1	25.0	24.9
Parity	Mean	3.0	3.0	2.9	2.9	2.9

4-year weight change, breast ca. incidence

Group	Number of Cases	Loss of > 5lbs	No change (ref)++	Gain of 5.1-9.9lbs	Gain of 10.0-14.9lbs	Gain of ≥ 15.0lbs	RR**	P_trend
overall	4196	0.97* (0.89-1.07)	1.0	1.05 (0.94-1.16)	1.09 (0.98-1.20)	1.20 (1.09-1.33)	1.13 (1.06-1.21)	<0.001
Pre- menopausal +	736	1.02 (0.79-1.32)	1.0	0.98 (0.77-1.25)	1.10 (0.88-1.38)	1.38 (1.13-1.69)	1.26 (1.08-1.48)	0.004
Post- menopausal +	3443	0.98 (0.88-1.08)	1.0	1.05 (0.93-1.19)	1.06 (0.94-1.20)	1.10 (0.97-1.25)	1.08 (1.00-1.16)	0.063
*HR (95% CI) ** per 25 lbs. + at both time po ++ weight chang					Rosner et a	al Breast Ca	ncer Res Tr	eat 2015


Overall there is a significant association of short-term weight gain with breast cancer incidence, particularly during pre-menopause.

Short term weight change, risk of breast ca

Hazard Ratio (95% CI)

Weight gain and risk according to starting BMI

Rosner et al Breast Cancer Res Treat 2015 Hazard Ratio (95% CI)

<u>Associations of short-term weight gain by tumor</u> <u>subtype, pre-menopausal women</u>

Group	Number of cases	Loss of > 5lbs	No change	gain of 5.1-9.9lbs	gain of 10.0-14.9lb s	gain of ≥ 15.0lbs	RR **	P_trend	P_het+
ER+/PR+	316	0.94* (0.63-1.40)	1.0	0.92 (0.63-1.34)	1.16 (0.83-1.61)	1.2 (0.9373)	1.13 (0.89-1.42)	0.32	
ER+/PR-	42	1.34 (0.50-3.58)	1.0	1.11 (0.41-2.95)	0.60 (0.18-1.99)	1. 7 (0.8089)	2.19 (1.33-3.61)	0.002	0.019
ER-/PR-	100	1.07 (0.50-2.29)	1.0	1.13 (0.57-2.26)	2.10 (1.23-3.56)	2.0t (1.21-3., 1)	1.61 (1.09-2.38)	0.01	0.12
*HR (95% CI) **per 25lbs									
⁺ vs ER+/PR+									

Associations of pre-menopausal weight gain are stronger for ER+/ PR- and ER-/PR- breast cancer, although case counts are small

Association of short-term weight gain by tumor subtype, post-menopausal women

Group	Number of cases	Loss of > 5lbs	No change	gain of 5.1-9.9lbs	gain of 10.0-14.9lb s	gain of ≥ 15.0lbs	RR **	P_trend	P_het⁺
ER+/PR+	1518	0.96* (0.84-1.10)	1.0	1.03 (0.87-1.23)	1.01 (0.84-1.21)	1.06 (0.88-1.27)	1.05 (0.94-1.16)	0.40	
ER+/PR-	419	0.73 (0.54-0.97)	1.0	1.21 (0.90-1.64)	0.80 (0.55-1.14)	0.91 (0.63-1.30)	1.25 (1.01-1.54)	0.043	0.15
ER-/PR-	419	1.36 (1.06-1.75)	1.0	1.00 (0.70-1.41)	1.39 (1.02-1.90)	1.01 (0.70-1.46)	0.99 (0.80-1.23)	0.93	0.65
*HR (95% Cl) **per 25lbs ⁺ vs ER+/PR+									

No significant heterogeneity by tumor type for post-menopausal women

<u>Summary – short-term weight gain</u>

- Overall, there is a significant positive association of short-term weight gain on breast cancer incidence
- Associations are stronger among pre-menopausal women and women with BMI < 25
- Results are consistent with EPIC /PANACEA study (Emaus, et al., Int. J. Cancer 2014: 10.1002/ ijc28926)

<u>Summary – long-term weight change</u>

- Overall, there is a protective effect of weight at age 10 on breast cancer incidence, which is present for all breast cancer subtypes.
- Premenopausal weight change since age 18 positively related to breast cancer incidence for ER+/PR+ tumors.

Possible Mechanisms

- Adiposity at age 10 is related to lower peak height growth which is related to lower risk of pre and post menopausal breast cancer
- Short-term weight gain leads to increase in glucose, a likely pathway for short-term weight gain and breast cancer incidence
- Long-term weight gain and ER+ breast cancer largely attributed to higher circulating estrogen levels, particularly after menopause
- Other pathways cannot be ruled out (inflammation)

8 WAYS to Stay Healthy & Prevent Cancer

- Maintain a healthy weight
- **2** Exercise regularly
- **3 Don't smoke**
- **4** Eat a healthy diet
- **5** Drink alcohol only in moderation
- **6** Protect yourself from the sun
- **7** Avoid sexually transmitted infections
- **8** Get screening tests

Possible Mechanisms

Short-term:

- Short-term weight gain leads to increase in glucose a likely pathway for short-term weight gain and breast cancer incidence
- Evidence stronger among leaner women where change in glucose may be more marked with short term weight gain

Possible Mechanisms

Long-term weight gain

- Adiposity at age 10 is related to lower peak height growth velocity, which is related to lower risk of pre and post menopausal breast cancer
- Long-term weight gain and ER+ breast cancer largely attributed to higher circulating estrogen levels, particularly after menopause

Washington University in St. Louis School of Medicine Graham Colditz, MD, DrPH Niess-Gain Professor of Surgery Chief, Division of Public Health Sciences, Dept. of Surgery Campus Box 8100 660 South Euclid St. Louis, MO 63110 (314) 454-7939

colditzg@wustl.edu

©2015

Washington University in St.Louis • School of Medicine